LogoLogo
Log in|Playground
  • Welcome
    • Introduction
    • FAQ
  • Capabilities
    • Log Management
    • Infrastructure Monitoring
    • Application Performance Monitoring (APM)
      • Application Metrics
      • Traces
      • Supported Technologies
    • Real User Monitoring (RUM)
  • Getting Started
    • Requirements
      • Kubernetes requirements
      • Kernel requirements for eBPF sensor
      • CPU architectures
      • ClickHouse resources
    • Installation & updating
    • Connect Linux hosts
    • Connect RUM
    • 5 quick steps to get you started
  • Use groundcover
    • Monitors
      • Create a new Monitor
      • Issues page
      • Monitor List page
      • Silences page
      • Monitor Catalog page
      • Monitor YAML structure
      • Embedded Grafana Alerts
        • Create a Grafana alert
    • Dashboards
      • Create a dashboard
      • Embedded Grafana Dashboards
        • Create a Grafana dashboard
        • Build alerts & dashboards with Grafana Terraform provider
        • Using groundcover datasources in a Self-hosted Grafana
    • Insights
    • Explore & Monitors query builder
    • Workflows
      • Create a new Workflow
      • Workflow Examples
      • Alert Structure
    • Search & Filter
    • Issues
    • Role-Based Access Control (RBAC)
    • Service Accounts
    • API Keys
    • Log Patterns
    • Drilldown
    • Scraping custom metrics
      • Operator based metrics
      • kube-state-metrics
      • cadvisor metrics
    • Backup & Restore Metrics
    • Metrics & Labels
    • Add custom environment labels
    • Configuring Pipelines
      • Writing Remap Transforms
      • Logs Pipeline Examples
      • Traces Pipeline Examples
      • Logs to Events Pipeline Examples
      • Logs/Traces Sensitive Data Obfuscation
      • Sensitive Data Obfuscation using OTTL
      • Log Filtering using OTTL
    • Querying your groundcover data
      • Query your logs
        • Example queries
        • Logs alerting
      • Query your metrics
      • Querying you data using an API
      • Using KEDA autoscaler with groundcover
  • Log Parsing with OpenTelemetry Pipelines
  • Log and Trace Correlation
  • RUM
  • Customization
    • Customize deployment
      • Agents in host network mode
      • API Key Secret
      • Argo CD
      • On-premise deployment
      • Quay.io registry
      • Configuring sensor deployment coverage
      • Enabling SSL Tracing in Java Applications
    • Customize usage
      • Filtering Kubernetes entities
      • Custom data retention
      • Sensitive data obfuscation
      • Custom storage
      • Custom logs collection
      • Custom labels and annotations
        • Enrich logs and traces with pod labels & annotations
        • Enrich metrics with node labels
      • Disable tracing for specific protocols
      • Tuning resources
      • Controlling the eBPF sampling mechanism
  • Integrations
    • Overview
    • Workflow Integrations
      • Slack Webhook Integration
      • Opsgenie Integration
      • Webhook Integration
        • Incident.io
      • PagerDuty Integration
      • Jira Webhook Integration
    • Data sources
      • OpenTelemetry
        • Traces & Logs
        • Metrics
      • Istio
      • AWS
        • Ingest CloudWatch Metrics
        • Ingest CloudWatch Logs
        • Ingest Logs Stored on S3
        • Integrate CloudWatch Grafana Datasource
      • GCP
        • Ingest Google Cloud Monitoring Metrics
        • Stream Logs using Pub/Sub
        • Integrate Google Cloud Monitoring Grafana Datasource
      • Azure
        • Ingest Azure Monitor Metrics
      • DataDog
        • Traces
        • Metrics
      • FluentBit
      • Fluentd
      • JSON Logs
    • 3rd-party metrics
      • ActiveMQ
      • Aerospike
      • Cassandra
      • CloudFlare
      • Consul
      • CoreDNS
      • Etcd
      • HAProxy
      • Harbor
      • JMeter
      • K6
      • Loki
      • Nginx
      • Pi-hole
      • Postfix
      • RabbitMQ
      • Redpanda
      • SNMP
      • Solr
      • Tomcat
      • Traefik
      • Varnish
      • Vertica
      • Zabbix
    • Source control (Gitlab/Github)
  • Architecture
    • Overview
    • inCloud Managed
      • Setup inCloud Managed with AWS
        • AWS PrivateLink Setup
        • EKS add-on
      • Setup inCloud Managed with GCP
      • Setup inCloud Managed with Azure
      • High Availability
      • Disaster Recovery
      • Ingestion Endpoints
      • Deploying in Sensor-Only mode
    • Security considerations
      • Okta SSO - onboarding
    • Service endpoints inside the cluster
  • Product Updates
    • What's new?
    • Earlier updates
      • 2025
        • Mar 2025
        • Feb 2025
        • Jan 2025
      • 2024
        • Dec 2024
        • Nov 2024
        • Oct 2024
        • Sep 2024
        • Aug 2024
        • July 2024
        • May 2024
        • Apr 2024
        • Mar 2024
        • Feb 2024
        • Jan 2024
      • 2023
        • Dec 2023
        • Nov 2023
        • Oct 2023
Powered by GitBook
On this page
  • Overview
  • Collection
  • Reconstruction
  • Enrichment
  • Aggregation
  • Exporting
  • Metrics
  • Traces
Export as PDF
  1. Capabilities

Application Performance Monitoring (APM)

Gain end-to-end observability into your applications performance, identify and resolve issues instantly - all with zero code changes.

Last updated 1 year ago

Overview

The groundcover platform collects data all across your stack using the power of eBPF instrumentation. Our is installed
in seconds and provides 100% coverage into application metrics and traces with zero code changes or configurations.

Resolve faster - By seamlessly correlating traces with application metrics, logs, and infrastructure events, groundcover’s APM enables you to detect and resolve root issues faster.

Improve user experience - Optimize your application performance and resource utilization faster than ever before, avoid downtimes and make poor end-user experience a thing of the past.

Collection

Our revolutionary eBPF sensor, , is deployed as a DaemonSet in your Kubernetes cluster. This approach allows us to inspect every packet that each service is sending or receiving, achieving 100% coverage. No sampling rates or relying on statistical luck - all requests and responses are observed.

This approach would not be feasible without a resource-efficient eBPF-powered sensor. eBPF not only extends the ability to pinpoint issues - it does so with much less overhead than any other method. eBPF can be used to analyze traffic originating from every programming language and SDK - even for encrypted connections!

Click for a full list of supported technologies

Reconstruction

After being collected by our eBPF code, the traffic is then classified according to its protocol - which is identified directly from the underlying traffic, or the library from which it originated. Connections are reconstructed, and we can generate transactions - HTTP requests and responses, SQL queries and responses etc.

Enrichment

In order to give as much context as possible each transaction is enriched with as much metadata as possible. Some examples might include the pods that took part in this transaction (both client and server), the nodes on which these pods are scheduled, and the state of container at the time of the request.

It is important to emphasize the impressive granularity level with which this process takes place - every single transaction observed is fully enriched. This allows us to perform more advanced aggregations.

Aggregation

Exporting

Metrics

Learn how groundcover's application metrics work:

Traces

Learn how groundcover's application traces work:

After being enriched by as much context as possible, the transactions as grouped together into meaningful aggregations. These could be defined by the workloads involved, the protocols detected and the resources that were accessed in the operations. These aggregations will mostly come into play when displaying .

After collecting the data, contextualizing it and putting it together in meaningful aggregations - we can now create and to provide meaningful insights into the services' behaviors.

proprietary eBPF sensor
Flora
here
metrics
traces
Application Metrics
Traces
golden signals